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Abstract

We indicate how granulometries may be useful in the analysis of random sets. We define a suitable size distribution
function as a tool in exploratory data analysis and give a new Hanisch style estimator for it. New Markov random sets
are constructed which favour certain sizes above others. A size-biased random set model is fitted to a data set concerning
the incidence of heather (Diggle, Biometrics 37 (1981) 531-539). © 1999 Pattern Recognition Society. Published by

Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the most basic properties of an object is its size.
It is no wonder then that size measures have been used
for a long time in the empirical sciences, and more re-
cently in the analysis of (binary) images. For instance in
classification problems, characteristics such as moments
of the empirical size distribution may be used as features,
See Vincent and Dougherty [1] for an overview as well as
[2-4].

There are many other applications. To name a few,
Serra [5] employs size distributions for shape and texture
analysis, Maragos uses them for multiscale shape repres-
entation [6], Haralick et al. [7,8] apply size distributions
to shape filtering and restoration problems, Sivakumar
[9] gives applications in texture classification and mor-
phological filtering, while texture synthesis and analysis
are considered by Sivakumar and Goutsias [10].

In this paper we illustrate how size distribution func-
tions may be used in stochastic geometry both as a de-
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scriptive tool in exploratory data analysis [11] and to
build new random set models. Section 2 reviews the basic
morphological operators [5,12,13] and shows how they
can be used to define a granulometry to measure size,
while Section 3 provides some background in stochastic
geometry [14]. In Section 4 we introduce the size distri-
bution function [13] of a stationary random closed set.
Section 5 focuses on the estimation of the size distribu-
tion function, and proposes a new estimator in the spirit
of Hanisch [15-17]. An application in exploratory data
analysis is given in Section 6. New Markov random set
models are constructed in Section 7 from a reference
Boolean model by biasing towards certain sizes, general-
ising the discrete morphologically constrained Gibbs
models of Sivakumar and Goutsias [10,18]. Finally, in
Section 8 a size-biased random set model is fitted to
a data set concerning the incidence of heather [19].

2. Morphological granulometries

Perhaps the oldest and most frequently used technique
to quantify the size of solid particles in the empirical
sciences is to use a series of sieves with varying mesh
openings. Clearly, the particles that cannot pass through
any given sieve are a subset of the total collection of
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particles; if the sieve is solid, no particle can pass through
it, and if a larger number of particles are considered then
the residual after sieving will be larger too. Moreover, if
we sieve the particles successively with two different mesh
sizes, the result will be the same as using only the one
with the biggest mesh opening. These simple but essential
features of sieving (as well as of other ‘sizing’ methods, see
[5]) underly the following axiomatic definition of
Matheron [13].

Definition 1. A family of operators i, : 2(R%) » 2(R%) on
the power set P(RY of RY indexed by r>0 is
a granulometry if for all X < R*

(GO) Yo(X) = X;

(G Y(X) < X forallr > 0;

(G2)if Y X then y(Y) < Y,(X) for all r > ;

(G3) Yy X)) = Y (X)) = Ymaxirf(X) for all 1, s > 0.

Condition (G3) is sometimes referred to as the sieving
condition. Intuitively, y(X) can be thought of as the
subset of particles in X that remain after sieving with
a mesh size r > 0.

In this paper, we are interested in a special class of
granulometries based on Euclidean openings. Let B be
a fixed subset of R%. Write B={ — b:beB} for the
reflection of B in the origin and use the subscript & for
translation over the vector h. Then the Minkowski addi-
tion of a set X < R? with structuring element B is defined
by

X@®B = {heR’: BynX # 0} 2.1
and similarly the Minkowski subtraction is given by
X©B = {heR’: B, < X}. 2.2)

Seen as operators on 2(RY), Egs. (2.1) and (2.2) are
referred to as dilation and erosion, respectively. The oper-
ators are dual, that is dilating the complement X* of a set
X amounts to eroding X itsell: (X‘@B) = (X©B).

Compositions of Minkowski addition and subtraction
define the opening

XoB=(XOB®B =|J{B:: heR? B, = X} (2.3)
and the closing
X +B=(X®B)OB = (X%BY. .4)

For a comprehensive account on mathematical morpho-
logy, see [5,12,13].

From now on, we will assume that the structuring
element B is non-empty, convex and compact. Let
rB={rb:beB} (r = 0) and set

YiX)=XorB, r30. 2.5)

Then (2.5) is a granulometry [13]. Indeed, properties
(G0)-(G2) follow directly from definition (2.3). The siev-
ing condition is a consequence of the assumptions on the
structuring element B, see Chap. 1-5in [13] or p. 334in
[5]

In summary, openings with structuring elements
of varying ‘mesh’ can be used to quantify the size
of a set X (see Section 4). By duality, the size of the
empty space X° can be measured by the associated
anti-granulometry

YUXF = (X°orBf = X *rB,

based on closings with structuring elements rB, r > 0.

3. Random sets and contact distributions

Stochastic geometry [14] is concerned with the study
of random closed sets. Random sets arise in a variety of
fields. Examples include samples of minerals in material
science, microscopic sections of cells in cytology or veg-
etation maps such as Fig. 1 depicting the presence of
heather [19].

Since a random closed set takes values in the family of
all closed subsets of R?, its probability distribution is
often untractable and lower-dimensional summary stat-
istics are called for. Indeed, a statistical analysis usually
starts with computing and plotting a few such statistics to
‘get a feel for the data’. The plots may suggest a suitable
parametric form for a probability model. Moreover, sum-
mary statistics may be used to estimate parameters and
to perform a goodness-of-fit test. We will apply this
approach to the data image of Fig. 1 in Sections 6 and 8.
Details and more examples can be found in the textbooks
[11,14].

Below we will assume that the random closed set X is
stationary, i.e. its distribution is invariant under transla-
tions. In order to exclude pathological cases, we assume
that for each x € R* the coverage probability P(x € X) is
strictly between 0 and 1.

Fig. 1. Image heather [19].
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.A summary statistic commonly used to measure the Define the size distribution function of X by
‘size’ of the pores in X* is the empty space function .
Filr) = Plxe X@rB Pi) {P("EX"B” 120 42
r)=P(xe r= .
rB) @1 PxeX -|riB), r<0. “2

or the related contact distribution function . . .
It is easily verified that Pg(0) = P(0€ X) = p, the cover-

Fy(r) — F&(0) age fraction of the stationary random closed set X. More-

Hglr) = Pxe X@rBlx ¢ X) = ——— 0 3.2) over, having excluded degenerate cases where X is either
the whole space or empty almost surely, Py(r) approaches

(r = 0). Because of the stationarity of X, these definitions Oat —oo and tends to 1 forr— 0.

do not depend on the choice of x, and by the assumption At this point it is important to note that there is some

on the coverage probabilities the conditioning in (3.2) is ambiguous terminology in the literature. For instance,

valid. Both (3.1) and (3.2) involve a structuring element B. the size distribution function Pg-) is called the

Typical choices include balls and squares, although non- granulométrie bidimensionelle in metallurgy [11,20], in

isotropic structuring elements may be preferred when image processing the granulometries of Definition 1 are

investigating directional effects. If B is a compact convex sometimes called size distributions [21], and the phrase

set containing a neighbourhood of the origin, then Hg(*) pattern spectrum is used to denote the normalised empiri-

is a distribution function but this is not the case for cal size distribution of a single realisation of X, see

general B (see [14]). Note that 1 — Hgr) can be inter- Maragos [6]. Thus, the pattern spectrum can be seen as

preted as the conditional probability that a copy of rB an estimator of (4.2).

placed at a test point 0 is entirely contained in the

background given that the test point itself does not fall in Lemma 1. Let X be a stationary random closed set and

X. A similar interpretation holds for the empty space B a non-empty convex compact structuring element. Then

function Fg(r). Pg(*) is well-defined and does not depend on the choice of
Definitions (3.1) and (3.2) can be seen as the stochastic x € RY. Seen as a function of r, Py *) takes values in [0, 1], is

counterparts of the granulometries defined in Section 2 increasing and semi-continuous from the right.

with particle size measured by

¥AX) = (X“®rBf = XOrB. Proof. First note that since B#@ is compact,

X@rB, XOrBhence X o rB, X * rB(r > 0) are closed sets
(see p. 19 in [13]). Since X is stationary, so are X o rB and
X « rBimplying that Py(r) is well-defined as the coverage
fraction of the random closed set X « rB (for r > 0) or
X o |r|B (for r < 0). In particular, Pg(r) does not depend
on the choice of x in (4.2).

To check that Pg(-) is increasing, first consider
r = s > 0. Then using well-known properties of the open-
ing,

However, although under our restrictions on B, {(-)
satisfies (G0)-(G2), in general the sieving condition does
not hold. Thus, in the remainder of this paper, we will
consider replacing the dilation in (3.1) and (3.2) by a clos-
ing to obtain a proper granulometry.

4. Size distribution functions

In mathematical morphology (see eg. [15]), the joint X «rB=(XorBY =((X‘csB)orBY 2 (X sBf
size distribution law of a stationary random closed set X is

defined using granulometry (2.5) described in Section 2 as = X »sB,
1—PxeXe-rB), rz=0, hence Pg(r) = Pa(s). Also, for r<s<®o, zﬁm(X? =
0= 1—P(xeX<|nB), r<Q0. @0 Yir(X)) S Y1 X) since ¥, is a granulometry (using

the notation of (2.5). Finally, Xo[r|B< X implies
By the stationarity of X, G(r) does not depend on Py(r) < P(0).

the choice of x e R?. However, from a probabilistic point The mapping (r, X) — X * rB is upper semi-continuous
of view, G() is not a proper distribution function, since it by properties 1-5-1 and 1-5-2vin [131 and increasing
is semi-continuous from the left rather than from the in r. Hence as r,ir=0,X *r,B{X *rB. Thus Pg) is
right. This will prove to be undesirable in Section 7 where right-continuous on [0, o). Similarly the mapp%ng
we define size-biased random sets by integrating with (r, X) = X o rB is upper semi-continuous and decreasmg
respect to size. For this reason, the following definition is in r > 0, hence 0 < r,1r implies X o r,B{X o rB. Thus, if
preferred. 0> s,|s, then 0 < —s,7 —s, and X o [s,|Bl.X o |s|B. We
conclude that Pg(-) is right-continuous.
Definition 2. Let X be a stationary random closed set Finally, since P(-) is defined in terms of probabilities,

and B a non-empty convex compact structuring element. it takes its values in [0,1]. O
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Summarising, Pg(-) is a proper distribution function.
Note that the empty-space function (3.1) is absolutely
continuous except for an atom in 0 (see [17] or [16]) but
that the size distribution function may have countably
many discontinuities.

Explicit expressions for Pg(r) are hard to find with the
notable exception of the linear size distribution functions
[13,17]. The contact distribution function Hgr) is avail-
able in closed form for Boolean models [14] (but not for
most other random set models!) and in this case, assum-
ing the primary grain is convex, depends only on the
moments of a few functionals of the grain. For instance in
R? the mean grain perimeter determines Hg(r), which, as
pointed out by Ripley [11], may result in poor distin-
guishing power as an exploratory data analysis tool. We
will return to this point in Section 8.

5. Estimation and edge effects

In this section we discuss estimating the size distribu-
tion function Pgr) of a stationary random closed set
X (cf. Definition 2). As a first step, note that forany r > 0
and any 4 < R? of positive volume | 4| > 0,

E(X*rBn4l 1 g
= = | PlaeX *rB)da = Py(r 5.1
T i ( 5(r) (5.1)

using the fact that X is stationary. Thus the volume
fraction of X *rB (or X o |r|B for negative r) in any set
A of positive volume yields a pointwise unbiased es-
timator of Pg(r).

In practice, however, a random set is not observed over
the whole space, but within some compact window W of
positive volume |W| (typically a square or rectangle).
Thus, due to edge effects caused by parts of X outside
W,X *rB and X o |r|B are not completely observable
and the volume fraction estimator with 4 = W may be
biased.

To overcome this problem, a minus sampling es-
timator

(X rBrwerBerB)
By, X) = LD - 52)
’ (X e B OlriBIrB)

W o(riBIrB)

has been proposed. This estimator is based on the local
knowledge principle [ 5] for openings and closings stating
that if the random set X is observed in the compact
window W then X o rBand X * rB (r > 0) are observable
within W ©(rB@®rB) . More specifically,

(XrB)n(W ©(rB@rB)) = (X nW)erB)n(W ©(rBDrB))

with a similar formula for the opening.

From (5.1) with A = W ©(rB®rB) it follows easily that
the minus sampling estimator in (5.2) is unbiased when-
ever |We(rB®rE)l > 0. However, as both numerator
and denominator in (5.2) depend on r, there is no guaran-
tee that the minus sampling estimator is monotone in r.
Nor is all available information used.

To implement (5.2), one typically does not compute the
areas but rather uses a grid T = {t;} of points in W and
simply counts the number of ;s falling in X *rB, X - rB
and WO (rB@rB). The resulting discretised estimator is
defined for ranges r for which there are grid points in
W o(r|B®|r|B); it is still pointwise unbiased and in gen-
eral suffers from the same lack of monotonicity as its
area-based counterpart.

For the empty space function (3.1), more refined
estimators have been proposed recently. Hansen et al.
[17] used survival analysis ideas for deriving a
Kaplan-Meier-type  estimator [22] for  Fyr).
Chiu and Stoyan [16] showed that the ideas underlying
this Kaplan-Meier approach are very similar to
those involved in the Hanisch estimator [15], ori-
ginally proposed for certain point pattern statistics.
In the remainder of this section, we will derive a
Hanisch style estimator for the size distribution function
(Definition 2).

To do so, we need three local size measures: with
respect to X, the background X°¢ and the boundary.
As before, let B be a non-empty convex compact
structuring element and X a stationary random
closed set observed in a compact observation window W.
Set

plx, X) =

{sup{r;O:Hh such that xe(rB), € X}, xeX, (53

0 x¢X,
inf{r >0:xeXorB}, x¢X,

n(x, X) = (5.4)
0 xeX,
inf{r > 0:(rBOrB),nW* # 0}, teW,

o, we = { (5.5)
0 t¢w.

It is easy to see that X orB={xeX:p(x,X) >r}
XerB={xeRi:q(x,X)<r} and WO(rB®rB)=
{xeW :{(x, W) = r}. Thus, p(x, A) measures the B-size
of a point x in A. Note that for r > 0, the restriction to
x€X may be omitted. Similarly, n(x, 4) measures the
B-size of voids at x left by A. We already saw that
observed distances are occluded by the edges of the
sampling window. Hence our final function {(x, W*)
measures the ‘distance’ from any point x in W to the
window boundary.
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The discretised minus sampling estimator can be ex-
pressed in terms of p, 7 and ( as follows:

# {l : Y](Ii, X) <r< C(tia W‘)}

5 TR G r=0,
e {i: p(tn X) < Irl; {(ts, W) = Irl}
#{i:p(t, X) < |rl; {(t;, W) = |r

1- #{i:c(tb WC)?Ir!} , r<0.

(5.6)

Estimator (5.6) is pointwise unbiased for those r for
which the number of sampling points ¢; at least a distance
|l away from W€ is positive, that is #{i:{(t,W°)
=} >0.

Note that (5.6) does not use all information contained
in the data. In particular, if t;¢ WOrB®rB), but
n(ti, X) < {(t;, W°) the correct void size at t; is measured.
Using this observation, one can define a Hanisch style
estimator for Pgr) (r = 0) by replacing the condition
{(ti, W) = r by {(ti, W€) = n(t;, X) with a similar adapta-
tion for r < 0.

Definition 3. Let X be a realisation of a stationary ran-
dom closed set observed in a compact window W. Then
for all r > 0 with #{i:{(t;, W) =r} > 0, define

#{in(t, X) = s < {1, W9}

- _
Pg(r, X) = xgr 0> 5] (5.7
and for r < 0 with # {i: {(t, W) = |r|} > 0, let

Pg(r, X) = 1 _ Z #{l : p(tia X) =S s C(tia Wc)} (5.8)

s<Irl #{i: {1, W) > s}

As we saw before, one of the disadvantages of the
minus sampling estimator is that it is not necessarily
increasing in r. The Hanisch style estimator does not
suffer from this disadvantage and is pointwise unbiased
too.

Theorem 1. Let X be a stationary random closed set, ob-
served in a compact window W. Let B be a non-empty
convex compact structuring element. Then the Hanisch style
estimator in Definition 3 is pointwise unbiased for Pgr),
increasing and semi-continuous from the right.

Proof. First of all, consider the case r > 0. Then by
stationarity of the random closed set X,

. B #{i:(t, X) =5 <y, W)
EPB(T, X) = E[,zs:, #{i . C(ti’ Wc) > S} :I

_ E[Z {n(t;, X) < r}1{t.e W ©(n(t, X)BDn(1;, X)B)}]
u # {j : tje w e(n(tis X)B@V[(t,, X)B)}

-y E[l{n(r,, X) < r}1{t,e W O(n(t, X)B®n(t;, X)B)}]
. #{j: t;e WO(n(t, X)BOn(t;, X)B)} '

Since the expectation depends on the random closed set
X only through the random variables #(t;, X), which have
probability distribution function Pg(-), we obtain

1{t,e W ©(sB®sB)}
v Jion#{j:tje WO(sB®sB)}

= Pg(r).
Similarly by duality, for r <0,
EP§r.X)=1—

5 E[lip(r., X) < Irl}1{t.e W ©(p(t:» X)BDp(t;, X)B)}]
” #{j:t;e WO(p(t, X)BDp(t, X)B)}

EPi(r,X) = dPgs)

1 J 1{t,e W ©(sB®sB)}
w Jioan#J 11,6 WO(sB@sB)}

dQ(s)

= P(p(0, X) = |rl) = P(O€ X < |r|B) = Py(r),

writing Qx(-) for the probability distribution of p(0, X).
It is clear that both (5.7) and (5.8) are increasing and
semi-continuous from the right. Furthermore,

lim,;o PR(r, X) =1 — #{izp(ty, X) =0}

#{i:,eW}

___#{i:p(t,,X)>0}<#{i:t,eX}

#licnew}y  #{i:oW)
=P§o,x). O

Thus the Hanisch style estimator preserves many proper-
ties of the size distribution function (cf. Lemma 1). How-
ever, in contrast to Pg(r) itself, P&(r, X) may be negative
and exceed 1. If this is undesirable, one can take
R=sup{r>0: #{i:t,e WO(rB®rB)} >0} and nor-
malise the summands in (5.7) and (5.8) accordingly. The
resulting estimator PY(r, X) is ratio-unbiased, for in-
stance for r > 0

EP}(r, X) _ Ps(r)

EPHR,X) PyR)

Similar techniques as in the proof of Theorem 1 can be
employed to give an expression for the variance of
P4(r, X) (r = 0) in terms of integrals with respect to the
covariance measure

Atsy t, 5, 1) = P(t;€ X » sB; t,€ X * tB)

(and similarly for r < 0), but note that the variance de-
pends on the choice of the grid T.
6. Exploratory data analysis

Usually, a statistical analysis of a binary image begins
with plotting summary statistics such as the estimated
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Fig. 2. Hanisch estimators of the size distribution function (solid line) and empty space function (broken line) for the left and right halves

of heather, .

empty space (3.1) or contact distribution function (3.2).
Ripley [11] proposed to look at the plots of the nor-
malised opening and closing transforms as well to get
a better feel for the data. Here we present some
further examples using the size distribution function
4.2).

Fig. 1 is a mapped pattern of heather (Calluna vulgaris),
observed in a rectangle of 10m x 20m at Jidras,
Sweden. The data were collected by G. Agren, T. Fager-
strom and P.J. Diggle and reproduced here with kind
permission. The digitisation is on a 100 x 200 pixel grid,
which is deemed a realistic reflection of the accuracy in
the field. For further details see [19]. No apparent spatial
inhomogeneity seems present, hence we may assume the
random set X representing the area occupied by heather
to be stationary.

In order to allow for cross validation, we will divide the
data in to two equal square regions of side 10 m. Since
bushes grow roughly spherical, a ball will be used as
structuring element. To compute the distance measures
p,n and {, the 5-7 chamfer metric-based algorithm of
Nacken [21] was used to approximate the Euclidean
metric, with distances calculated using the method of
Borgefors [23]. The normalised Hanisch style estimators
thus obtained are given in Fig. 2.

Note that the plots for the left and right halves of the
field are similar, thus confirming the stationarity assump-
tion. The coverage fraction is close to 1/2 and empty
spaces measured by dilation are mostly smaller than
40 cm. The graph of the estimated empty space function
lies above the graph of the size distribution function,
reflecting the fact that for a centred ball B the inclusion

relationship X « rB = X@rB holds. The sizes of heather
bushes and patches of background range up to about
80 cm.

7. Size-biased Markov random sets

Perhaps the best-known example of a random closed
set is the Boolean model [13,14]. In this model, an en-
semble random set is build from basic building blocks
(the so-called grains) positioned at random locations (the
germs) that are independently and uniformly scattered in
space. More precisely, let W be a compact region in R? of
positive volume. We require that

e the number N of germs in W follow a Poisson distribu-
tion, that is

P(N=n)=

AW
e—uwl(_l__'__lz_, n=01,...,
n!

the constant 4 > 0 is called the intensity;

e given N = n, the germs X,,... X, are independent and
uniformly distributed on W;

e at each germ X; = x; a (random) grain K; is placed
independently of other grains according to some prob-
ability distribution u(-) on the family of non-empty
compact sets.

Then the union U{x;@®K}) is called a Boolean model.
Note that the finite union of compact grains is indeed
closed, as desired.
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Other random closed set models may be obtained by
weighting of a reference Boolean model (see [24] for
technical details). In particular, a size distribution weight
function can be used to bias towards certain sizes. The
same idea underlies the morphologically constrained ran-
dom field models on a discrete pixel grid, defined by
Sivakumar and Goutsias [18] as

1
P =2 exp[ = ¥ AIX o IB\XG+ DB

J
— Y X jB\X (- I)Z?I], (7.1)
i=1

where X is the set of foreground pixels in a binary image
W and for any A = W, |4| denotes the number of pixels
in A. The special case f;, y; = 1 had already been studied
by Chen and Kelly [25]. It is worth noting that the
exponent in (7.1) is based on volume fractions, thus
failing to account for edge effects (cf. Section 5). Various
extensions of morphologically constrained random fields
have been considered; see [9,10] for details.

In the remainder of this section we will extend (7.1) to
continuous random set models observed in a compact
window W of positive volume |W| > 0.

Definition 4. A size-biased Markov random set is any
random closed set whose density with respect to
a Boolean model exists and is of the form

N

o) =, exp[ —Jf(S) aPyis, x>], 1)

where f: R — R is a bounded (measurable) function and
Py(-, X) is an estimator of the size distribution function
(4.2) based on X.

Some care has to be taken to ensure that (7.2) is well
defined. In particular, the lack of monotonicity of the
minus sampling estimator causes problems in defining
the integral in the exponent of (7.2). However, by The-
orem 1, for every X the Hanisch style estimator P4(-, X)
can be normalised into a probability distribution func-
tion and hence | f(s) dP4(s, X) is well defined for measur-
able functions f(- ). By similar arguments it can be shown
that if the naive volume fraction estimator based on (5.1)
is taken for Pg(-, X), the exponent in (7.2) is well defined.
A sufficient condition to avoid explosion, that is to en-
sure that the normalising constant Z is finite, is Ruelle
stability:

Jf(s) dPy(s, X)> —a—bn

for some positive constants a and b (writing n for the
number of grains in X). It follows that if f(-) is bounded
in absolute value, | f(s)] < F, its integral with respect to
the normalised Hanisch style estimator is bounded as
well and hence (7.2) is well defined. Finally, the un-

normalised Hanisch style estimator (5.7)—(5.8) gives rise
to a signed measure, bounded in absolute value by | T},
the number of sampling points in the grid T. Hence,
under the same condition | f(s)] < F, (7.2) is well defined.

Before turning to Markov properties of (7.2), we pres-
ent some examples.

7.1. Morphologically smooth random sets

Let f(s) = |W|1-,0/(5) log y. Then, using the volume
fraction estimator yields density

pX) = % y I B (7.3)

generalising the Chen—Kelly model [25] for binary ran-
dom fields. Note that for y > 1, the most likely realisa-
tions X are open with respect to the structuring element
B. Thus sets built of approximately convex components
are favoured over those with thin or elongated pieces,
sharp edges or small isolated clutter.

By duality, taking f(s) = [W|1, 1/(s) log y yields

LX) = 57100 B, (1.4

favouring for y > 1 sets that are approximately closed
with respect to B and discouraging small holes or rough
edges.

Both models are well defined for y <1 too, for y < 1
encouraging morphological roughness.

Note that in (7.3) and (7.4), || denotes Lebesgue
measure restricted to W and hence p(-) is susceptible to
edge effects. This can be alleviated by using the Hanisch
style estimator. The resulting model influences the mor-
phological smoothness of its realisations as described
above.

7.2. Morphological area-interaction random sets

Let f(s) = |W|[1{s < — 1} logy and Pg(-, X) the vol-
ume fraction estimator, yielding

1
X)=—=y ¥ Bl
pX) Z7

If B were the empty set, p(-) would define an area-
interaction random set [24,26]. Thus, for general B, p(-)
can be seen as an opening-smoothed area-interaction
model. By duality, f(s) = — 1{s > 1} log y,

1 -
X)=— l-IX'BIIIWI’
AX) ==

defines a closing-smoothed area-interaction random set.
Again, Hanisch style estimators may be employed to
better account for edge effects.
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Similar ideas may be used if the area measure in the
exponent of y is replaced by the Euler characteristic or
other quermass integral [27], but note that some care has
to be taken to ensure that the model does not explode.
However, since the closing operator removes small holes,
the closing-smoothed Euler-interaction model may be
integrable when the non-smoothed version is not.

7.3. Size-symmetric random sets

Let f be the indicator function of ( — g, g], hence
1 LA
X)) = Z exp[ — yf dPg(s, X)). (7.5)
-9

For y > 0, particle and pore sizes exceeding g will
be favoured, while for y < 0 the sizes tend to be smaller
than g.

The probabilistic model (7.2) (as well as (7.1)) involves
a constant Z ensuring p(-) integrates to 1. Due to the
high dimensionality of the model, a closed-form expres-
sion for Z is usually not available. Therefore from a prac-
tical point of view, it would be particularly convenient if
small changes to the set X would affect p(X) only locally.
In that case, iterative algorithms can be designed that
avoid Z and involve local computations only.

First, consider the case where both the germs and the
grains of which the random closed set X is composed are
fully observable and write Y = {(x;, K)): i =1, ..., N} for
the collection of germ-grain pairs. Referring back to
Fig. 1 this means that individual heather bushes would be
observed instead of the area occupied by the heather.
Writing X = u{x;®K;) for the union of all germs, (7.2)
can serve as a probability density for Y with respect to
a Poisson ‘grain-marked germ’ process [14].

Suppose that addition of a grain K at u is considered.
Then the likelihood ratio

ﬂ)ﬁ-};{—") = exp|: - ff(s) dPys, XUK,)

+ Jf (s) dPy(s.X )] (7.6)

does not depend on the intractable constant Z (writing as
before K, for the translation of K over the vector u). If
moreover f(-) is supported on [ — g, g], the log-likeli-
hood ratio reduces to

I f(s)dPg(s, XUK,) + ’ S(s)dPg(s, X) (7.7)
-9 -9q

which involves only germ—grain pairs close’ to (u, K).
More precisely, define a neighbourhood relation by

(u, K) ~ (v, L) < L,®(gBDgB)NK,D(gBDgB) + 0,
(7.8)

where u, ve W and K, L are non-empty compact sets. In
the following theorem we will show that (7.7) only de-
pends on those (x; K;)eY that are ~ -neigbours of
(u, K), i.e. (x;, K;) ~ (4, K). In mathematical parlance, this
local dependence property means that in the fully observ-
able case Y is Markov [28,29] with respect to the neigh-
bourhood relation ~ .

Theorem 2. Let Y be a germ-grain model defined by its
density (7.2) for some bounded function f(-) that is sup-
portedon [ — g, g](g > 0). Then Y is Markov with respect to
~ for P+, X) either the naive estimator (5.1) or the
Hanisch style estimator (5.7) and (5.8).

Proof. We start with proving that if x ¢ K,®(gB®gB),
then for all s<g,xe(XUK,)osB<xeXosBand
xe(XuK,)*sB< xeX «sB.

To see this, let xe(XuUK,)e sB. Then 3h such that
x€(sB)y < XUK,, and, in particular, we can write
x =h + sb for some be B. Now if (sB),nK, # 0, then
h+sb'ekK, for some beB and hence
x=h+sb=h+sb +(sb—sb)eK,®sBDsB) = K,
®(gB@gB) using the convexity of the structuring ele-
ment B. This contradicts the assumption that
x¢K,®(gB®gB) and hence xe(sB),< X, that is
xeX osB.

Similarly for the closing, let xe(XUK,) * sB. Then by
duality x ¢ (XUK,) o sB and hence for any h such that
x€(sB), the intersection (sB),N(XuUK,) must be non-
empty. By the previous argument, K, cannot be intersec-
ted and hence (sB),nX # 0. Thus xe X « sB.

Secondly, for x¢K,®(gB@gB), suppose that
nix, XUK,) <g. Then xe(XUK,)*gB, hence by the
above xeXe+gB or equivalently n(x,X)<g. Also
n(x, XUK,) = inf{s > 0: xe(XUK,)*» sB = inf{0 < 5 <
g:xe(XUK,)*sB} =inf{0 < s < g:xeX*sB=nx X)
Dually, suppose that p(x, X) <g. Then by x¢ X -« gB
hence by the above x ¢ (XUK,) ° gB or p(x, X) < g. Also
p(x, X)=sup{s >0:xeXosB} =sup{0 <s<g:xeX
osB} = sup{0 < s < g:xe(XUK,)°sB} = p(x, XUK,).

Hence for se[ — g, ], P(s, XUK,) — P(s, X) depends
only on grid points t;€ K,@®(gB®gB). By the local know-
ledge principle [5]

I(X * gB)N(4©(9BDgB))
=(XnA)* gB)N(AO(gBDgB))

(similarly for openings) with 4 = K,®(gB®gB®
(9B@®gB) and noting that A©(gBDgB) = K,®(gB®gB)
only knowledge of Y in so far as it intersects A is needed.
The result follows. [

If grains are not individually observable, note that if
X = X, U ---uX, is partitioned into its connected com-
ponents X, -, X,, the opening X o B= U{B, < X}
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also partitions, as the convexity of B implies that B, must
fall entirely in one of the X; Thus, both the volume
fraction (5.1) and Hanisch style (5.8) estimators satisfy
Pu(s, X) = Y% 1[Psls, X))] for s<O. Similarly, X +B
partitions over the connected components of W\X and
hence

k 1
px) = 1 9T 9(x.

Thus, altering X will only affect the connected compo-
nents that are modified, a state-dependent Markov prop-
erty as introduced by Baddeley and Mgller [29]. See also
[24,30].

8. Application

In Section 6, a binary image of a species of heather was
considered (cf. Fig. 1). It is well known to biologists that
Calluna vulgaris grows from seedlings into roughly circu-
lar bushes, reaching a maximum radius of about 50 cm
in some 20-25 years. As they grow, the branches inter-
mingle and overlapping areas of the field are occupied.
Thus it is that in maps such as Fig. 1 no individual bushes
can be observed. The particular field depicted in Fig. 1 is
25 years old.

The above considerations motivated Diggle [19] to fit
a Boolean model (see Section 7) with circular grains. The
radius distribution was taken to be of the form ¢ + W
where ¢ is a fixed constant and W a Weibull distributed
random variable. Although the model is plausible on
biological grounds and fits well using a test based on the
empty space distribution function (3.1), it was found that
realisations of the fitted model contained more isolated
patches than the data (cf. Figs. 1-3). Further discussion
can be found in Ripley [11], who compared the graphs of
normalised opening and closing transforms for data and
fitted model. Hall [31] discusses counting methods, Cres-
sie and Laslett [32] estimate the mean number of heather
bushes per unit area using marker points and Baddeley
and Gill [33] consider a statistic derived from the empty
space distribution.

Below we will fit a size-biased Markov random set
model (Definition 4). In order to suggest a weight func-
tion f(-), the plots of the estimated size distribution
function PY(r, X) for the data are compared to that of
a realisation of the Boolean model fitted by Diggle [19].
Identifying the left half-field with the unit square [19],
found the following estimates: the intensity is A = 221,
the minimal radius 0.0281 and the Weibull parameters
are (0.8471, 355.2). A typical realisation is given in Fig. 3.
The normalised Hanisch style estimators of the size dis-
tribution function are given in Fig. 4 (broken lines), using
again a ball for the structuring element B. In order to

Lo 2% ::o

Fig. 3. Realisation of Boolean model with circular grains.

3
re

T T T T T
40 -20 o 20 40

Fig. 4. Upper and lower envelopes of the estimated size distribu-
tion function based on 19 simulations of a Boolean model (solid
lines) compared to those for the left and right halves of heather
(broken lines).

assess the variability, upper and lower envelopes based
on 19 independent realisations are plotted as well (corre-
sponding to a significance level of 5%).

The minimal grain size shows up clearly in the flat
pieces of the envelopes. Moreover, the data curves for
r less than about — 40 cm lie above the upper simulation
envelope, indicating that the fitted model has too few
large grains. Thus, a goodness-of-fit test based on Euclid-
ean openings would reject the Boolean model. A possible
explanation of the greater discriminating power of size
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distribution functions compared to the empty space func-
tion (3.1) is that for Boolean models with circular grains,
Fg(r) is a function of the mean grain area and perimeter
only (see Section 3).

For larger positive r, the empirical curve of the left half
of Fig. 1 is near the upper envelope, suggesting that the
pores are somewhat too large as well (although since
parameters were estimated from the left half of the data,
to determine the fit the estimated size distribution func-
tion of the right half should be considered). Hence, to
favour larger particles and smaller pores, consider the
size-biased model

1 _ .
pX)= Z exp[ — y1 + 71PE( — g, X) + y2PH(g, X)]
(8.1)

parametrised by y,,7, = 0. The Boolean model corres-
ponds to y; =y, =0.

In contrast to [19] which used a least-squared-error
approach, we will estimate the parameter vector
¥ = (y1, ¥2) by the maximum likelihood approach out-
lined by Geyer [34]. Writing h(X) = Zp(X), the log
likelihood I(y) with respect to a fixed reference value
¥ = 0 equals

m(X) _ log 20 (8.2)

10)=log} 3 ~ '8 zigy

Here, the fixed Y terms do not affect the modes of i(y) and
a maximum likelihood estimator can, in principle, be
found by optimising (8.2) over y. A complication is that
the term log Z(y)/Z(y) is not known in closed form.
However, since Z is a normalising constant,
Z(y)/Z() = Eyh,(X)/hy(X) and therefore the log likeli-
hood I(y) can be approximated by

_LoRX) (18 k(X))
B

where X, ... X, are samples from (8.1) under parameter
value . Thus, given a data image X = x and samples
X1, -.-, Xn 7 is Obtained by optimising (8.3) with respect
to y. Provided the covariance matrix of (P§(— g, X) — 1,
PH(g,X)) is non-singular, any solution to the maximum
likelihood equations is necessarily unique. For details see
(341

The simulations needed in (8.3) are performed using
the Metropolis—-Hastings sampler of Geyer and Mgller
[35], a special case of Green’s reversible jump technique
[36]. This is an iterative procedure based on successive
additions and deletions of a grain (see the discussion
preceding Theorem 2). Given an initial set of germ-grain
pairs Y, ={(x, K)} with associated set X,=
UL{x:® K)), with probability 1/2 propose adding a grain
(‘birth’); with probability 1/2 propose deleting one of the

grains in Y, if any (‘death’). A new germ is proposed
uniformly with a grain drawn from u(-). To ensure the
correct distribution in the long run, the proposal (u, K) is
accepted with probability

. P XoUK,) AW|
"““{1’ AXo) "(Yo)'*'l}

where n(Y ;) denotes the number of elements of Y. If the
new grain K at u is accepted, set Y, = Y,u{(y, K)},
X, = XoUK,; otherwise Y, =Y, and X, = X,. Sim-
ilarly, select grain K; at x; for deletion from Y, with
probability 1/n(Y o). The proposal is accepted with prob-
ability

. P(Xo\(K)x) n(Yo)
"‘"‘{1’ Xo) llWI}

and if so, Y| = Yo\{(x5K)}, X1 = Xo\(Ky) Otherwise
Y, =Y, and X, = X, Continuing in this fashion, we
obtain a sequence X,, keN,, whose distribution con-
verges in total variation to p(-) as k - oo (from almost
all initial states). For details see [38,39].

We applied this strategy to the model (8.1). As ob-
served above, for the fitted Boolean model, P4(r, X ) is
significantly too small for r less than — 40 ¢cm. Recalling
that a pixel represents a square of side 10 cm, to favour
larger particles, we choose g = 5 pixels. The reference
vector Y was taken to be (100, 100). In order to check
whether the Metropolis—-Hastings sampler has con-
verged, time series of the sufficient statistics P&(g, X) and
P¥(— g, X) — 1 are plotted in Fig. 5 over 200000 iter-
ations. The sampler appears to be mixing, thus there
seems no reason to doubt convergence.

As for the parameters, the maximum likelihood ap-
proach outlined above was used, deleting the first 100 000
samples to allow for burn-in of the Metropolis-Hastings
chain. The estimates are $, = 117 and §, = 84. Thus, the
sizes of heather bushes are influenced more strongly than
those of the background spaces. Typical samples (with
the same resolution as the data) are given in Fig. 6. Note
that the similarity to Fig. 1 seems greater than for the
Boolean model, and that, in particular, the tendency of
bushes to intermingle has increased.

To assess the goodness of fit, Fig. 7 plots the nor-
malised Hanisch estimator PH(r, X) for the right half of
the heather data (broken line) and the envelopes based on
19 (dependent) samples of the fitted size-biased random
set model (8.1) taken every 5000 steps after a burn-in
time of 100000 steps. In comparison to Fig. 4, note
that for r >0 (as for the reference Boolean model)
the estimated size distribution of the right half of the data
lies within the simulation envelopes, but that for r <0
the fit is much better than for a Boolean model
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Fig. 5. Time series of the sufficient statistics P4( — g, X) — 1 (left) and P¥(g, X) (right) over 200000 Metropolis-Hastings steps of (8.1)

with g = 5 pixels and y, = y, = 100.

Fig. 6. Realisations of (8.1) with g = 5 pixels and y, = 117, y, = 842 after 100000 (left) and 130000 (right) Metropolis-Hastings steps.

Nevertheless, further improvements may be obtained by
relaxing the minimal grain size assumption and finer
discretisation.

9. Conclusions

In stochastic geometry, one of the trends in recent
years has been the development of Markov models
for simple point and object patterns [28,29,37] and

the development of the computational tools to deal
with them [35,36,38]. Some models can be adapted to
random closed sets [24], but nevertheless explicit
random set models defined in likelihood terms are scarce
[39].

As a step in the direction of the development of more
flexible and genuinely set-based models, this paper intro-
duced size-biased Markov random set models, generalis-
ing the discrete morphologically constrained random
fields [18]. These were obtained by biasing a Boolean
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Fig. 7. Upper and lower envelopes of the estimated size distribu-
tion function based on 19 simulations of (8.1) with g = 5 pixels

and y, = 117, y, = 84 (solid line) compared to that of the right
half of heather (broken line).

model towards certain sizes, and include smoothed ver-
sions of quermass-interaction random sets [24,27]. It was
shown that the models are well defined and under mild
regularity conditions satisfy a Markov property.

From a statistical point of view, inference for random
sets is predominantly non-parametric in nature, based on
summary statistics such as the empty space function and
on least squares or method of moments techniques (see
[14] for an overview). In [34], Geyer advocates likeli-
hood-based inference in the context of spatial point
processes. In this paper, we show that Monte Carlo
maximum likelihood techniques are also feasible for
random set models.

It should be noted that exact simulation of size-biased
Markov random set models based on the Propp-
Wilson coupling from the past idea [40] is theoretically
possible [38]. However, since tight upper and lower
bounds on the likelihood ratio based on the current state
of the algorithm would have to be computed at every
iteration, we preferred to use the computationally easier
(but only asymptotically exact) Metropolis-Hastings
method in fitting a size-biased random set to a binary
image.

Finally, it is important to recognise that most prob-
lems involving spatial data are hampered by edge effects
due to parts of the image extending beyond the observa-
tion window. Thus, a Hanisch style estimator for the size
distribution function of stationary random closed sets
was developed and shown to be unbiased.

10. Summary

In this paper, size distribution functions were con-
sidered, both as an exploratory tool and as an ingredient
for modelling random closed sets.

After a brief review of basic notions from mathematical
morphology, a size distribution function Pg(r), re R, was
defined for stationary random closed sets and compared
to other summary statistics such as the empty space
function and the contact distribution function. A Hanisch
style estimator for Pg(r) based on a partial observation of
the random set within a bounded sampling window was
derived. We proved that this estimator is pointwise un-
biased, monotonically increasing and semi-continuous
from the right implying that it can be normalised into
a probability distribution function, in contrast to the com-
monly used minus sampling estimator.

Random set models were constructed by biasing a ref-
erence Boolean model towards certain sizes. Examples
include morphologically smooth random sets and mor-
phologically constrained area-interaction models. It was
shown that under mild conditions the resulting models
are well defined and possess a Markov property. From
a practical point of view, Markov properties are useful in
considerably reducing the computational burden in-
herent in working with random sets, and allow for likeli-
hood-based inference using Markov chain Monte Carlo
techniques.

As an illustration, a mapped pattern of heather
was analysed. Fitting a Boolean model (representing
spatial independence between the individual bushes)
resulted in an underrepresentation of larger bushes.
Thus, a size-biased model was suggested which gave
a better fit.
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